Takasaki University of Health and Welfare

Researchers Information System

Japanese English

TOP
Search by Faculty
or Department
Search by Keyword
Search by Research
Field
Detailed Search

Takasaki University of Health and Welfare top

TANAKA Yuji

Profile Research field Research achievement Educational achievement Management achievement Social contribution achievement

 

Published Papers
No.Title URL, Journal, Vol( No), Start Page- End Page, Publication date, DOI 
1
Gallic Acid Derivatives Propyl Gallate and Epigallocatechin Gallate Reduce rRNA Transcription via Induction of KDM2A Activation , Biomolecules, ,   , Dec. 25, 2021, https://doi.org/10.3390/biom12010030 
2
Production of ROS by Gallic Acid Activates KDM2A to Reduce rRNA Transcription. , Cells, 9( 10), 2266- 2266, Oct. 10, 2020, https://doi.org/10.3390/cells9102266 
3
Metformin activates KDM2A to reduce rRNA transcription and cell proliferation by dual regulation of AMPK activity and intracellular succinate level , SCIENTIFIC REPORTS, 9( 1), 18694- 18694, Dec. 2019, https://doi.org/10.1038/s41598-019-55075-0 
4
KDM2A-dependent reduction of rRNA transcription on glucose starvation requires HP1 in cells, including triple-negative breast cancer cells. , Oncotarget, 10( 46), 4743- 4760, Jul. 30, 2019, https://doi.org/10.18632/oncotarget.27092 
5
Control of Ribosomal RNA Transcription by Nutrients , Gene Expression and Regulation in Mammalian Cells - Transcription Toward the Establishment of Novel Therapeutics, ,   , Feb. 28, 2018, https://doi.org/10.5772/intechopen.71866 
6
SF-KDM2A binds to ribosomal RNA gene promoter, reduces H4K20me3 level, and elevates ribosomal RNA transcription in breast cancer cells , INTERNATIONAL JOURNAL OF ONCOLOGY, 50( 4), 1372- 1382, Apr. 2017, https://doi.org/10.3892/ijo.2017.3908 
7
Mild Glucose Starvation Induces KDM2A-Mediated H3K36me2 Demethylation through AMPK To Reduce rRNA Transcription and Cell Proliferation , MOLECULAR AND CELLULAR BIOLOGY, 35( 24), 4170- 4184, Dec. 2015, https://doi.org/10.1128/MCB.00579-15 
8
A CxxC Domain That Binds to Unmethylated CpG Is Required for KDM2A to Control rDNA Transcription , YAKUGAKU ZASSHI-JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, 135( 1), 11- 21, Jan. 2015, https://doi.org/10.1248/yakushi.14-00202-2 
9
A CxxC Domain That Binds to Unmethylated CpG Is Required for KDM2A to Control rDNA Transcription , YAKUGAKU ZASSHI-JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, 135( 1), 11- 21, Jan. 2015, https://doi.org/10.1248/yakushi.14-00202-2 
10
CxxC-ZF Domain Is Needed for KDM2A to Demethylate Histone in rDNA Promoter in Response to Starvation , CELL STRUCTURE AND FUNCTION, 39( 1), 79- 92, 2014, https://doi.org/10.1247/csf.13022 
11
[Control mechanisms of ribosomal RNA transcription]. , Seikagaku. The Journal of Japanese Biochemical Society, 85( 10), 852- 860, Oct. 2013,  
12
[Control mechanisms of ribosomal RNA transcription]. , Seikagaku. The Journal of Japanese Biochemical Society, 85( 10), 852- 60, Oct. 2013,  
13
Ablation of Mina53 in mice reduces allergic response in the airways. , Cell structure and function, 38( 2), 155- 67, 2013, https://doi.org/10.1247/csf.13006 
14
JmjC enzyme KDM2A is a regulator of rRNA transcription in response to starvation , EMBO JOURNAL, 29( 9), 1510- 1522, May. 2010, https://doi.org/10.1038/emboj.2010.56 
15
TATA-binding Protein (TBP)-like Protein Is Engaged in Etoposide-induced Apoptosis through Transcriptional Activation of Human TAp63 Gene. , The Journal of biological chemistry, 284( 51), 35433- 35440, Dec. 2009, https://doi.org/10.1074/jbc.m109.050047 
16
Dysfunction of Mitochondrial ATP Production As a Target for Personalized Cancer Therapy , Current Pharmacogenomics and Personalized Medicine, 7( 1), 27- 39, Mar. 1, 2009, https://doi.org/10.2174/187569209787582358 
17
Rapid proteasomal degradation of transcription factor IIB in accordance with F9 cell differentiation. , Gene, 436( 1-2), 115- 120, Feb. 2009, https://doi.org/10.1016/j.gene.2009.01.016 
18
Expression of the TAF4b gene is induced by MYC through a non-canonical, but not canonical, E-box which contributes to its specific response to MYC. , International journal of oncology, 33( 6), 1271- 80, Dec. 2008, https://doi.org/10.3892/ijo_00000118 
19
Transcriptional repression of the mouse wee1 gene by TBP-related factor 2. , Biochemical and biophysical research communications, 352( 1), 21- 28, Nov. 2006, https://doi.org/10.1016/j.bbrc.2006.10.175 
20
TATA-binding protein-related factor 2 is localized in the cytoplasm of mammalian cells and much of it migrates to the nucleus in response to genotoxic agents. , Molecules and cells, 22( 2), 203- 209, Oct. 2006,  
21
TBP-like protein as a novel G2-checkpoint factor , Recent Res. In Devel. Cell Sci, ( 1), 129- 139, 2004,  

 

MISC
No.Title URL, Journal, Vol( No), Start Page- End Page, Publication date 
1
オルガネラから見た飢餓応答とエネルギー代謝制御【核小体でのrRNA転写と飢餓】 , 月刊細胞, 51( 9), 436‐439- , Aug. 20, 2019 
2
メトホルミンはKDM2A依存的なrRNA転写抑制及び細胞増殖抑制を引き起こす , 日本分子生物学会年会プログラム・要旨集(Web), 41st,  ROMBUNNO.2P‐0658 (WEB ONLY)- , 2018 
3
メトホルミンによるKDM2A依存的なrRNA転写抑制は栄養素により調節される , 日本生化学会大会(Web), 90th,  ROMBUNNO.2P‐0579 (WEB ONLY)- , 2017 
4
メトホルミン,ビタミンCによるKDM2A依存的なrRNA転写抑制と乳がん細胞増殖抑制の解析 , 日本分子生物学会年会プログラム・要旨集(Web), 39th,  ROMBUNNO.3P‐0745 (WEB ONLY)- , 2016 
5
KDM2Aはマイルドなグルコース飢餓時にAMPKシグナル経路を介してrRNA転写と細胞増殖を調節する , 日本生化学会大会(Web), 88th,  2P0664 (WEB ONLY)- , 2015 
6
非メチルCpGを認識するCxxCドメインはヒストン脱メチル化酵素KDM2AのrDNA転写調節に必要である , 日本薬学会年会要旨集(CD-ROM), 134th,  ROMBUNNO.S40-2- , 2014 
7
Control mechanisms of ribosomal RNA transcription , 生化学, 85( 10), 852- 860, Oct. 2013 
8
脱メチル化酵素KDM2A(Lysine‐specific demethylase2A)によるリボソームRNA転写抑制機構の解析 , 日本分子生物学会年会プログラム・要旨集(Web), 36th,  1P-0252 (WEB ONLY)- , 2013 
9
mina53遺伝子欠損マウスではアレルギー性気道炎症が減弱する , アレルギー, 61( 9), 1438- 1438, 2012 
10
Nucleoli and Ribosomal RNA Transcription , 細胞工学, 31( 8), 901- 908, 2012 
11
脱メチル化酵素KDM2A(Lysine‐specific demethylase2A)によるリボソームRNA転写抑制機構の解析 , 日本分子生物学会年会プログラム・要旨集(Web), 34th,  4P-0060 (WEB ONLY)- , 2011 
12
ヒストン脱メチル化酵素KDM2A(Jumonji‐C containing histone demethylase 1A)はリボソームRNA転写を抑制する , 日本薬学会年会要旨集, 130th( 3), 140- , Mar. 5, 2010 
13
脱メチル化酵素KDM2A(jumonji‐C containing histone demethylase1A)によるリボソームRNA転写の調節 , 生化学, ,  ROMBUNNO.3T2-4- , 2010 
14
インスリン様成長因子によるクロマチン状態の調節を介したリボソーム合成調節機構の解明 , 成長科学協会研究年報, ( 32), 181- 183, Aug. 1, 2009 
15
脱メチル化酵素KDM2Aは飢餓状態でリポソームRNA転写を抑制する。 , 日本分子生物学会年会講演要旨集, 32nd( Vol.4), 98- , 2009 
16
ヒストンメチル化修飾とリボソームRNA転写 , 日本薬学会関東支部大会講演要旨集, 52nd,  91- , Oct. 4, 2008 
17
ヒストンメチル化によるリボソームRNA遺伝子の転写調節の可能性について , 生化学, ,  2P-0889- , 2007 
18
TLP(TBP‐like protein)によるサイクリンG2遺伝子の転写活性化能の解析 , 日本分子生物学会年会講演要旨集, 28th,  419- , Nov. 25, 2005 
19
TLP(TBP‐like protein)によるサイクリンG2遺伝子の転写活性化機構の解析 , 日本分子生物学会年会プログラム・講演要旨集, 27th,  428- , Nov. 25, 2004 

 

Research Grants & Projects
No.Offer organization, System name, Title, Fund classification, Date 
1
Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C), Study of gallic acid about the function as an epigenetic controller for glyconeogenesis., ,  Apr. 2020 - Mar. 2024 
2
Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Young Scientists (B), Environmental conditions control nucleolar signaling to regulate ribosomal RNA transcription by KDM2A (K-specific demethylase), ,  Apr. 2013 - Mar. 2016 
3
Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Young Scientists (B), Molecular mechanism of repression of rDNA transcription by KDM2A in response to starvation, ,  2011 - 2012